The Effect of High-Intensity Ultraviolet Light to Elicit Microalgal Cell Lysis and Enhance Lipid Extraction

Author:

Sydney Thomas,Marshall-Thompson Jo-Ann,Kapoore Rahul,Vaidyanathan Seetharaman,Pandhal Jagroop,Fairclough J.

Abstract

Currently, the energy required to produce biofuel from algae is 1.38 times the energy available from the fuel. Current methods do not deliver scalable, commercially viable cell wall disruption, which creates a bottleneck on downstream processing. This is primarily due to the methods depositing energy within the water as opposed to within the algae. This study investigates ultraviolet B (UVB) as a disruption method for the green algae Chlamydomonas reinhardtii, Dunaliella salina and Micractinium inermum to enhance solvent lipid extraction. After 232 seconds of UVB exposure at 1.5 W/cm2, cultures of C. reinhardtii (culture density 0.7 mg/mL) showed 90% disruption, measured using cell counting, correlating to an energy consumption of 5.6 MJ/L algae. Small-scale laboratory tests on C. reinhardtii showed bead beating achieving 45.3 mg/L fatty acid methyl esters (FAME) and UV irradiation achieving 79.9 mg/L (lipids solvent extracted and converted to FAME for measurement). The alga M. inermum required a larger dosage of UVB due to its thicker cell wall, achieving a FAME yield of 226 mg/L, compared with 208 mg/L for bead beating. This indicates that UV disruption had a higher efficiency when used for solvent lipid extraction. This study serves as a proof of concept for UV irradiation as a method for algal cell disruption.

Funder

University of Sheffield

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3