Author:
Efatmaneshnik Mahmoud,Alam Nima,Kealy Allison,Dempster Andrew G
Abstract
Vehicular communication technologies are becoming staples of modern societies. This paper proposes a new positioning algorithm for vehicular networks. The algorithm is a non-classic Multi-Dimensional Scaling Filter (MDSF) that builds on a novel and computationally effective Multi-Dimensional Scaling (MDS) solution covariance estimation technique and also a Maximum Likelihood (ML) filter. In general a major drawback of the non-classic MDS is the high computational cost because of its iterative nature. It is shown that a special blend between vehicular Map-Matching (MM) and MDSF considerably reduces the number of iterations and the convergence time, making the MDSF a suitable algorithm for vehicular network positioning. The performance of MDSF is compared with that of an Extended Kalman Filter (EKF) together with the Cramar Rao Lower Bound (CRLB). It is shown through simulation that for all types of traffic conditions MDSF performs better than EKF and closer to CRLB than EKF. It is also shown that both MDSF and EKF algorithms are robust to typical Global Positioning System (GPS) outages in deep urban canyons. CRLB also proves that Cooperative Positioning (CP) in general has the ability to bridge short GPS outages.
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献