Cooperative Navigation for Low-Cost UAV Swarm Based on Sigma Point Belief Propagation

Author:

Chen MingxingORCID,Xiong Zhi,Song Fengyi,Xiong JunORCID,Wang Rong

Abstract

As navigation is a key to task execution of micro unmanned aerial vehicle (UAV) swarm, the cooperative navigation (CN) method that integrates relative measurements between UAVs has attracted widespread attention due to its performance advantages. In view of the precision and efficiency of cooperative navigation for low-cost micro UAV swarm, this paper proposes a sigma point belief propagation-based (SPBP) CN method that can integrate self-measurement data and inter-UAV ranging in a distributed manner so as to improve the absolute positioning performance of UAV swarm. The method divides the sigma point filter into two steps: the first is to integrate local measurement data; the second is to approximate the belief of position based on the mean and covariance of the state, and pass message by augmentation, resampling and cooperative measurement update of the state to realize a low-complexity approximation to traditional message passing method. The simulation results and outdoor flight test results show that with similar performance, the proposed CN method has a calculation load more than 20 times less than traditional BP algorithms.

Funder

National Natural Science Foundation of China

National Defense Basic Research Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on collaborative multi-UAV localization method based on combination navigation information;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-07-26

2. A study on dual quaternion based cooperative relative navigation of multiple UAVs with monocular vision-inertial integration;Chinese Journal of Aeronautics;2024-07

3. Adaptive Message Passing for Cooperative Positioning Under Unknown Non-Gaussian Noises;IEEE Transactions on Instrumentation and Measurement;2024

4. Localization Algorithm Based on a Spring Particle Model (LASPM) for Large-Scale Unmanned Aerial Vehicle Swarm (UAVs);International Journal of Cognitive Informatics and Natural Intelligence;2023-11-15

5. Aerial Swarm Cooperative Navigation Enhancement Method Based on Hybrid Linearization Belief Propagation;2023 IEEE International Conference on Real-time Computing and Robotics (RCAR);2023-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3