Toward Accurate Indoor Positioning: An RSS-Based Fusion of UWB and Machine-Learning-Enhanced WiFi

Author:

Kia GhazalehORCID,Ruotsalainen LauraORCID,Talvitie JukkaORCID

Abstract

A wide variety of sensors and devices are used in indoor positioning scenarios to improve localization accuracy and overcome harsh radio propagation conditions. The availability of these individual sensors suggests the idea of sensor fusion to achieve a more accurate solution. This work aims to address, with the goal of improving localization accuracy, the fusion of two conventional candidates for indoor positioning scenarios: Ultra Wide Band (UWB) and Wireless Fidelity (WiFi). The proposed method consists of a Machine Learning (ML)-based enhancement of WiFi measurements, environment observation, and sensor fusion. In particular, the proposed algorithm takes advantage of Received Signal Strength (RSS) values to fuse range measurements utilizing a Gaussian Process (GP). The range values are calculated using the WiFi Round Trip Time (RTT) and UWB Two Way Ranging (TWR) methods. To evaluate the performance of the proposed method, trilateration is used for positioning. Furthermore, empirical range measurements are obtained to investigate and validate the proposed approach. The results prove that UWB and WiFi, working together, can compensate for each other’s limitations and, consequently, provide a more accurate position solution.

Funder

European Space Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3