Abstract
Ocean currents impose a negative effect on Autonomous Underwater Vehicle (AUV) underwater target searches, which lengthens the search paths and consumes more energy and team effort. To solve this problem, an integrated algorithm is proposed to realise multi-AUV cooperative search in dynamic underwater environments with ocean currents. The proposed integrated algorithm combines the Biological Inspired Neurodynamics Model (BINM) and Velocity Synthesis (VS) method. Firstly, the BINM guides a team of AUVs to achieve target search in underwater environments; BINM search requires no specimen learning information and is thus easier to apply to practice, but the search path is longer because of the influence of ocean current. Next the VS algorithm offsets the effect of ocean current, and it is applied to optimise the search path for each AUV. Lastly, to demonstrate the effectiveness of the proposed integrated approach, simulation results are given in this paper. It is proved that this integrated algorithm can plan shorter search paths and thus the energy consumption is lower compared with BINM.
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献