A Triangle Matching Algorithm for Gravity-aided Navigation for Underwater Vehicles

Author:

Yang Zhenli,Zhu Zhuangsheng,Zhao Weigao

Abstract

In this paper, a triangle matching algorithm using local gravity field maps is proposed to bound the drift errors inherent in Strapdown Inertial Navigation Systems (SINS) in gravity-aided navigation. This triangle matching algorithm has two main stages, the first is the initial matching stage, which has a coarse phase and a fine phase to address the large unknown initial errors made by INS, and the other is the tracking matching stage, which mainly aims at tracking the matching solution with the vehicle running in real time. Simulations were carried out using data for the Bohai Sea and South China Sea areas, to assess the effects of different initial errors on the matching solutions. Finally some experiments were carried out to evaluate the proposed algorithm. The results show that the triangle matching algorithm has some compelling advantages, such as a capability to address the large unknown initial errors made by INS, and good real-time quality of matching the gravity measurements with the local gravity maps.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Reference25 articles.

1. Comparison of k-MSN and kriging in local prediction

2. Zheng J.D. and Gao Y. (2009). Fingerprint Matching Algorithm Based on Similar Vector Triangle. The 2nd International Congress on Image and Signal Processing, Xiamen, CN.

3. Time Series Marching Algorithm with Confidence and Error Bounds in WSNs;Wang;The Journal of Chinese Computer Systems,2008

4. Hugh R. , Louis M. , Rovert A. and Daniel M. (2000). Next Generation Marine Precision Navigation System. Position Location and Navigation Symposium, San Diego, CA.

5. Underwater geomagnetic navigation based on ICP algorithm

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3