Dynamic Collision Avoidance Algorithm for Unmanned Surface Vehicles via Layered Artificial Potential Field with Collision Cone

Author:

Xu Xinli,Pan Wei,Huang Yubo,Zhang Weidong

Abstract

A dynamic collision avoidance algorithm via layered artificial potential field with collision cone (LAPF-CC) is proposed to overcome the shortcomings of the traditional artificial potential field method in dynamic collision avoidance. In order to reduce invalid actions for collision avoidance, the potential field is divided into four layers, and a collision cone with risk detection function is introduced. Relative distance and relative velocity are used as variables to establish the risk of collision, and a torque named ‘speed torque’ is constructed. Speed torque, attractive force and repulsive force work together to change the speed and heading of the unmanned surface vehicle (USV). Driving force and torque are controlled separately, which makes it possible for the LAPF-CC algorithm to be used for real-time collision avoidance control of underactuated USVs. Simulation results show that the LAPF-CC algorithm performs well in dynamic collision avoidance.

Publisher

Cambridge University Press (CUP)

Subject

Ocean Engineering,Oceanography

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Safe Deep Reinforcement Learning-Based Controller (SDRLC) for Autonomous Navigation of Planetary Rovers;2024 IEEE Space, Aerospace and Defence Conference (SPACE);2024-07-22

2. An Improved Hybrid Path Planning Algorithm in Indoor Environment;International Journal of Advanced Network, Monitoring and Controls;2024-06-01

3. Hybrid path planning method for USV using bidirectional A* and improved DWA considering the manoeuvrability and COLREGs;Ocean Engineering;2024-04

4. Formation Control for UAV-USVs Heterogeneous System with Collision Avoidance Performance;Journal of Marine Science and Engineering;2023-12-10

5. 基于模型预测控制的欠驱动USV自主航行模型;Journal of Shanghai Jiaotong University (Science);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3