Author:
Fan Yunsheng,Mu Dongdong,Zhang Xianku,Wang Guofeng,Guo Chen
Abstract
In this paper, a response model of an Unmanned Surface Vehicle (USV) with a pod-like propulsion device is established. To improve the robustness of motion control in heavy sea states, an integrated nonlinear feedback course-keeping controller is proposed. First, to establish a response model of a USV with pod-like propulsion, model parameters are obtained by the method of system identification, then an integrated nonlinear feedback control strategy is proposed. The essence of this method is to make the original error signal pass through a nonlinear function, and then the output of this function is used to replace the original error signal. Simulation results show that under ordinary sea states, nonlinear feedback can save up to 34.5% of energy used compared with standard feedback methods; under heavy sea states, this can rise to 40.8%. A set of field experiments were carried out with a USV with pod-like propulsion. Results show that under heavy sea states, the test USV can maintain the target course well, which proves the correctness of the model and the robustness of the proposed method.
Publisher
Cambridge University Press (CUP)
Subject
Ocean Engineering,Oceanography
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献