Sensing the physical and nutritional status of the root environment in the field: a review of progress and opportunities

Author:

CLARK L. J.,GOWING D. J. G.,LARK R. M.,LEEDS-HARRISON P. B.,MILLER A. J.,WELLS D. M.,WHALLEY W. R.,WHITMORE A. P.

Abstract

The challenge that faces agriculture at the start of the 21st Century is to provide security of food production in a sustainable way. Achieving this task is difficult enough, but against a background of climate change, it becomes a moving target. However, one certainty is that soil factors that limit crop growth must be taken into account as new strategies for crop management are developed. To achieve this, it is necessary to measure the physical and nutritional status of the root environment in the field. Before considering measurement methods, our understanding of how the plant interacts with its soil environment is reviewed, so that it is clear what needs to be measured. Soil strength due to soil drying is identified as an important stress that limits agricultural productivity. The scope to measure soil factors that directly affect plant growth is reviewed. While in situ sensors are better developed, progress in the development of remote sensors of soil properties are also reviewed. A robust approach is needed to interpret soil measurements at the field scale and here geostatistics has much to offer. The present review takes a forward look and explores how our understanding of plant responses to soil conditions, the newly emerging sensing technologies and geostatistical tools can be drawn together to develop robust tools for soil and crop management. This is not intended to be an exhaustive review. Instead, the authors focus on those aspects that they consider to be most important and where the greatest progress is being made.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3