Impact of Combined Heat and Drought Stress on the Potential Growth Responses of the Desert Grass Artemisia sieberi alba: Relation to Biochemical and Molecular Adaptation

Author:

Alhaithloul Haifa Abdulaziz S.

Abstract

Artemisia sieberi alba is one of the important plants frequently encountered by the combined effect of drought and heat stress. In the present study, we investigated the individual and combined effect of drought and heat stress on growth, photosynthesis, oxidative damage, and gene expression in A. sieberi alba. Drought and heat stress triggered oxidative damage by increasing the accumulation of hydrogen peroxide, and therefore electrolyte leakage. The accumulation of secondary metabolites, such as phenol and flavonoids, and proline, mannitol, inositol, and sorbitol, was increased due to drought and heat stress exposure. Photosynthetic attributes including chlorophyll synthesis, stomatal conductance, transpiration rate, photosynthetic efficiency, and chlorophyll fluorescence parameters were drastically reduced due to drought and heat stress exposure. Relative water content declined significantly in stressed plants, which was evident by the reduced leaf water potential and the water use efficiency, therefore, affecting the overall growth performance. Relative expression of aquaporin (AQP), dehydrin (DHN1), late embryogenesis abundant (LEA), osmotin (OSM-34), and heat shock proteins (HSP70) were significantly higher in stressed plants. Drought triggered the expression of AQP, DHN1, LEA, and OSM-34 more than heat, which improved the HSP70 transcript levels. A. sieberi alba responded to drought and heat stress by initiating key physio-biochemical and molecular responses, which were distinct in plants exposed to a combination of drought and heat stress.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference105 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3