Predicting carcass energy content and composition in broilers using the group method of data handling-type neural networks

Author:

FARIDI A.,MOTTAGHITALAB M.,DARMANI-KUHI H.,FRANCE J.,AHMADI H.

Abstract

SUMMARYThe success of poultry meat production has been strongly related to improvements in growth and carcass yield, mainly by increasing breast proportion and reducing carcass fat. Conventional laboratory techniques for determining carcass composition are expensive, cumbersome and time consuming. These disadvantages have prompted a search for alternative methods. In this respect, the potential benefits from modelling growth are considerable. Neural networks (NNs) are a relatively new option for modelling growth in animal production systems. One self-organizing sub-model of artificial NN is the group method of data handling-type NN (GMDH-type NN). The present study aimed at applying the GMDH-type NNs to data from two studies with broilers in order to predict carcass energy (CEn, MJ/g) content and relative growth (g/g of body weight) of carcass components (carcass protein, breast muscle, leg and thigh muscles, carcass fat, abdominal fat, skin fat and visceral fat). The effective input variables involved in the prediction of CEn and carcass fat content using data from the first study were dietary metabolizable energy (ME, kJ/kg), crude protein (CP, g/kg of diet), fat (g/kg of diet) and crude fibre (CF, g/kg of diet). For data from the second study, the effective input variables involved in the prediction of carcass components were dietary ME (MJ/kg), CP (g/kg of diet), methionine (g/kg of diet), lysine (g/kg of diet) and body weight (kg). Quantitative examination of the goodness of fit, using R2 and error measurement indices, for the predictive models proposed by the GMDH-type NN revealed close agreement between observed and predicted values of CEn and carcass components.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3