Probability increment based swarm optimization for combinatorial optimization with application to printed circuit board assembly

Author:

Zeng Kehan,Tan Zhen,Dong Mingchui,Yang Ping

Abstract

AbstractA novel swarm intelligence approach for combinatorial optimization is proposed, which we call probability increment based swarm optimization (PIBSO). The population evolution mechanism of PIBSO is depicted. Each state in search space has a probability to be chosen. The rule of increasing the probabilities of states is established. Incremental factor is proposed to update probability of a state, and its value is determined by the fitness of the state. It lets the states with better fitness have higher probabilities. Usual roulette wheel selection is employed to select states. Population evolution is impelled by roulette wheel selection and state probability updating. The most distinctive feature of PIBSO is because roulette wheel selection and probability updating produce a trade-off between global and local search; when PIBSO is applied to solve the printed circuit board assembly optimization problem (PCBAOP), it performs superiorly over existing genetic algorithm and adaptive particle swarm optimization on length of tour and CPU running time, respectively. The reason for having such advantages is analyzed in detail. The success of PCBAOP application verifies the effectiveness and efficiency of PIBSO and shows that it is a good method for combinatorial optimization in engineering.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent model-based optimization of cutting parameters for high quality turning of hardened AISI D2;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2020-03-03

2. Developing a new hybrid soft computing technique in predicting ultimate pile bearing capacity using cone penetration test data;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2020-01-30

3. Integrated optimization of mixed-model assembly sequence planning and line balancing using Multi-objective Discrete Particle Swarm Optimization;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2019-05-06

4. Efficient hybrid group search optimizer for assembling printed circuit boards;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2018-12-17

5. A reinforced combinatorial particle swarm optimization based multimodel identification of nonlinear systems;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2016-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3