Efficient hybrid group search optimizer for assembling printed circuit boards

Author:

Lin Cheng-Jian,Huang Mei-LingORCID

Abstract

AbstractAssembly optimization of printed circuit boards (PCBs) has received considerable research attention because of efforts to improve productivity. Researchers have simplified complexities associated with PCB assembly; however, they have overlooked hardware constraints, such as pick-and-place restrictions and simultaneous pickup restrictions. In this study, a hybrid group search optimizer (HGSO) was proposed. Assembly optimization of PCBs for a multihead placement machine is segmented into three problems: the (1) auto nozzle changer (ANC) assembly problem, (2) nozzle setup problem, and (3) component pick-and-place sequence problem. The proposed HGSO proportionally applies a modified group search optimizer (MGSO), random-key integer programming, and assigned number of nozzles to an ANC to solve the component picking problem and minimize the number of nozzle changes, and the place order is treated as a traveling salesman problem. Nearest neighbor search is used to generate an initial place order, which is then improved using a 2-opt method, where chaos local search and a population manager improve efficiency and population diversity to minimize total assembly time. To evaluate the performance of the proposed HGSO, real-time PCB data from a plant were examined and compared with data obtained by an onsite engineer and from other related studies. The results revealed that the proposed HGSO has the lowest total assembly time, and it can be widely employed in general multihead placement machines.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3