Intelligent model-based optimization of cutting parameters for high quality turning of hardened AISI D2

Author:

Pourmostaghimi Vahid,Zadshakoyan MohammadORCID,Badamchizadeh Mohammad Ali

Abstract

AbstractThis paper proposes an intelligent model-based optimization methodology for optimizing the production cost and material removal rate subjected to surface quality constraint in turning operation of hardened AISI D2. Unlike traditional approaches, this paper deals with finding optimum cutting parameters considering the real condition of the cutting tool. Tool flank wear is predicted by the model obtained using genetic programming. On the basis of the predicted flank wear value, the surface roughness of work piece is estimated by neural networks. Applying the particle swarm optimization algorithm, the optimum machining parameters are determined. The simulation and experimental results show that machining with proposed intelligent optimization methodology has higher efficiency than conventional techniques with constant optimized cutting parameters.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3