Prediction of cutting force via machine learning: state of the art, challenges and potentials
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Link
https://link.springer.com/content/pdf/10.1007/s10845-023-02260-8.pdf
Reference228 articles.
1. Abeni, A., Loda, D., Özel, T., & Attanasio, A. (2021). Modeling of cutting force in micro-end-milling process with experimental validation on additive manufactured Nickel-based superalloy. Procedia CIRP, 102, 222–227. https://doi.org/10.1016/j.jmapro.2021.11.030
2. Adarsha Kumar, K., Ratnam, C., Venkata Rao, K., & Murthy, B. S. N. (2018). Experimental studies of machining parameters on surface roughness, flank wear, cutting forces and work piece vibration in boring of AISI 4340 steels: Modelling and optimization approach. SN Applied Sciences. https://doi.org/10.1007/s42452-018-0026-7
3. Adineh, M., & Doostmohammadi, H. (2021). A hybrid approach based on artificial neural network and cuckoo algorithm for optimization of the main cutting force during turning of Si brass alloys. SN Applied Sciences. https://doi.org/10.1007/s42452-020-04075-1
4. Agarwal, A., & Desai, K. A. (2020). Amalgamation of physics-based cutting force model and machine learning approach for end milling operation. Procedia CIRP, 93, 1405–1410. https://doi.org/10.1016/j.procir.2020.04.102
5. Aghazadeh, F., Tahan, A., & Thomas, M. (2018). Tool condition monitoring using spectral subtraction and convolutional neural networks in milling process. The International Journal of Advanced Manufacturing Technology, 98(9–12), 3217–3227. https://doi.org/10.1007/s00170-018-2420-0
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Traversability Analysis and Path Planning for Autonomous Wheeled Vehicles on Rigid Terrains;Drones;2024-08-23
2. Prediction of the cutting forces in milling operation based on multi-objective optimization of the time series analysis parameters;Machining Science and Technology;2024-07-08
3. Joint multi-server cache sharing and delay-aware task scheduling for edge-cloud collaborative computing in intelligent manufacturing;Wireless Networks;2024-05-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3