Unsteady control of supersonic turbulent cavity flow based on resolvent analysis

Author:

Liu QiongORCID,Sun YiyangORCID,Yeh Chi-AnORCID,Ukeiley Lawrence S.ORCID,Cattafesta Louis N.ORCID,Taira KunihikoORCID

Abstract

We use resolvent analysis to develop a physics-based, open-loop, unsteady control strategy to attenuate pressure fluctuations in turbulent flow over a rectangular cavity with a length-to-depth ratio of $6$ at a Mach number of $1.4$ and a Reynolds number based on cavity depth of $10\,000$. Large-eddy simulations (LES) of the baseline uncontrolled flow reveal the dominance of Rossiter modes II and IV that generate high-amplitude unsteadiness via trailing-edge impingement and oblique shock waves that obstruct the free stream. To suppress the oscillations, we introduce three-dimensional unsteady blowing along the cavity leading edge. We leverage resolvent analysis as a linear model with respect to the baseline flow to guide the selections of the optimal spanwise wavenumber and frequency of the unsteady actuation input for a fixed momentum coefficient of 0.02. Instead of choosing the most amplified resolvent forcing modes, we seek a disturbance that yields sustained amplification of the primary response mode-based kinetic energy distribution over the entire cavity length. This necessary but not sufficient guideline for effective mean flow modification is evaluated using LES of the controlled cavity flows. The most effective control case reduces the pressure root mean square level up to $52\,\%$ along cavity walls relative to the baseline and is approximately twice that achievable by comparable steady blowing. Dynamic mode decomposition on the controlled flows confirms that the optimal actuation input indeed suppresses the formation of the large-scale Rossiter modes. It is expected that the present flow control guideline derived from resolvent analysis will also be applicable at higher Reynolds numbers with the aid of physical insights and further validation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3