Interpolatory input and output projections for flow control

Author:

Herrmann BenjaminORCID,Baddoo Peter J.ORCID,Dawson Scott T.M.ORCID,Semaan RichardORCID,Brunton Steven L.ORCID,McKeon Beverley J.ORCID

Abstract

Eigenvectors of the observability and controllability Gramians represent responsive and receptive flow structures that enjoy a well-established connection to resolvent forcing and response modes. However, whereas resolvent modes have demonstrated great potential to guide sensor and actuator placement, observability and controllability modes have been leveraged exclusively in the context of model reduction via input and output projections. In this work, we introduce interpolatory, rather than orthogonal, input and output projections, that can be leveraged for sensor and actuator placement and open-loop control design. An interpolatory projector is an oblique projector with the property of preserving certain entries in the vector being projected. We review the connection between the resolvent operator and the Gramians, and present several numerical examples where we perform both orthogonal and interpolatory input and output projections onto the dominant forcing and response subspaces. Input projections are used to identify dynamically relevant disturbances, place sensors to measure disturbances, and place actuators for feedforward control in the linearized Ginzburg–Landau equation. Output projections are used to identify coherent structures and place sensors aiming at state reconstruction in the turbulent flow in a minimal channel at$Re_{\tau }=185$. The framework does not require data snapshots and relies only on knowledge of the steady or mean flow.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Army Research Office

National Science Foundation

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An invitation to resolvent analysis;Theoretical and Computational Fluid Dynamics;2024-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3