Mean resolvent operator of a statistically steady flow

Author:

Leclercq ColinORCID,Sipp DenisORCID

Abstract

This paper introduces a new operator relevant to input–output analysis of flows in a statistically steady regime far from the steady base flow: the mean resolvent ${{\boldsymbol{\mathsf{R}}}}_0$ . It is defined as the operator predicting, in the frequency domain, the mean linear response to forcing of the time-varying base flow. As such, it provides the statistically optimal linear time-invariant approximation of the input–output dynamics, which may be useful, for instance, in flow control applications. Theory is developed for the periodic case. The poles of the operator are shown to correspond to the Floquet exponents of the system, including purely imaginary poles at multiples of the fundamental frequency. In general, evaluating mean transfer functions from data requires averaging the response to many realizations of the same input. However, in the specific case of harmonic forcings, we show that the mean transfer functions may be identified without averaging: an observation referred to as ‘dynamic linearity’ in the literature (Dahan et al., J. Fluid Mech., vol. 704, 2012, pp. 360–387). For incompressible flows in the weakly unsteady limit, i.e. when amplification of perturbations by the unsteady part of the periodic Jacobian is small compared to amplification by the mean Jacobian, the mean resolvent ${{\boldsymbol{\mathsf{R}}}}_0$ is well-approximated by the well-known resolvent operator about the mean flow. Although the theory presented in this paper extends only to quasi-periodic flows, the definition of ${{\boldsymbol{\mathsf{R}}}}_0$ remains meaningful for flows with continuous or mixed spectra, including turbulent flows. Numerical evidence supports the close connection between the two resolvent operators in quasi-periodic, chaotic and stochastic two-dimensional incompressible flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient harmonic resolvent analysis via time stepping;Theoretical and Computational Fluid Dynamics;2024-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3