On the turbulence dynamics induced by a surrogate seagrass canopy

Author:

Houseago Robert C.,Hong Liu,Cheng ShyuanORCID,Best James L.,Parsons Daniel R.,Chamorro Leonardo P.ORCID

Abstract

The distinct turbulence dynamics and transport modulated by a common seagrass species were investigated experimentally using a flexible surrogate canopy in a refractive-index-matching environment that enabled full optical access. The surrogate seagrass replicated the dynamic behaviour and morphological properties of its natural counterpart. The flows studied were subcritical with Froude numbers $Fr<0.26$ and concerned five Reynolds numbers $Re\in [3.4\times 10^{4}, 1.1\times 10^{5}]$ and Cauchy numbers $Ca\in [120, 1200]$ . Complementary rigid canopy experiments were also included to aid comparative insight. The flow was quantified in wall-normal planes in a developed region using high-frame-rate particle image velocimetry. Results show that the deflection and coordinated waving motion of the blades redistributed the Reynolds stresses above and below the canopy top. Critically, in-canopy turbulence associated with the seagrass lacked periodic stem wake vortex shedding present in the rigid canopy, yet the flexible canopy induced vortex shedding from the blade tips. Inspection of spatial and temporal characteristics of coherent flow structures using spectral proper orthogonal decomposition reveals that Kelvin–Helmholtz-type vortices are the dominant flow structures associated with the waving motion of the seagrass and that modulated the local flow exchange in both rigid and flexible canopies. A barrier-like effect produced by the blade deflections blocked large-scale turbulence transport, thereby reducing vortex penetration into the canopy. In addition, we uncovered a transition from sweep-dominated to ejection-dominated behaviour in the surrogate seagrass. We hypothesise that the vortices created during the upward blade motion period play a major role in the sweep-to-ejection-dominated transition. Conditionally averaged quadrant analysis on the downward and upward blade motion supports this contention.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3