Hydrodynamics across seagrass meadows and its impacts on Indonesian coastal ecosystems: A review

Author:

Risandi Johan,Rifai Husen,Lukman Kevin M.,Sondak Calvyn F. A.,Hernawan Udhi E.,Quevedo Jay Mar D.,Hidayat Rahman,Ambo-Rappe Rohani,Lanuru Mahatma,McKenzie Len,Kohsaka Ryo,Nadaoka Kazuo

Abstract

Seagrass canopies are important components of the world’s coastal environments providing critical ecological services. Nearshore hydrodynamics, i.e., waves and currents, are essential in controlling the ecological processes across coastal environments. Seagrass meadows can impose more complex hydrodynamics processes by attenuating sea-swell waves and decreasing the impact of nearshore mean water level rise due to wave setup and Infragravity (IG) waves. Consequently, the seagrasses dissipate waves and reduce flows allowing sediments to settle and accrete the shorelines. However, despite their significant roles, knowledge of hydrodynamics in the Indonesian seagrass ecosystems is relatively limited compared to other coastal ecosystems such as sandy beaches, mangroves, and coral reefs. This review highlights the dynamics of waves and currents, and their interaction with sediment transport and ecological processes, including biogeochemical and dispersal processes on the seagrass ecosystem contributing to the existing seagrass research in Indonesia. The associated literature is collected from scientific databases such as Scopus and Google Scholar that range between 1965 and 2021. The result showed that most of the research on hydrodynamic in seagrass ecosystems was carried out in temperate zones. Until recently, there have been limited publications discussing the interaction between the Indonesian (tropical) seagrass ecosystem and hydrodynamics parameters, even though the region has abundant seagrass species. Moreover, Indonesia is strongly influenced by various atmospheric-oceanic forcing, including the Asian monsoon affecting the dynamic of the coastal area with seagrass ecosystems. At a canopy scale, the correlation between the nearshore (tropical) hydrodynamics and ecological processes in the system is yet to be explored. Considering the potential benefit of seagrasses to coastal ecosystems, developing future research in hydrodynamics across the ecosystem is critical to overcoming the knowledge gaps in Indonesia. The knowledge gained could support the Indonesian seagrass ecosystem services and their resilience to potential hazards and climate change.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3