Simulation-based study of turbulent aquatic canopy flows with flexible stems

Author:

He SidaORCID,Liu HanORCID,Shen LianORCID

Abstract

Large-eddy simulation (LES) is performed to investigate the dynamics of flow and canopy motions and the energy transfer in turbulent canopy flows. Different from the traditional approach that models the canopy as a continuous medium with a drag coefficient prescribed a priori, an immersed boundary method together with a beam model is employed to explicitly capture the dynamics of individual stems and resolve monami. The simulation cases cover a broad range of stem flexibilities from rigid stems to oscillatory stems to stems yielding to the flow. For highly flexible canopies, the stem fluctuation is small such that the canopy behaves like a rigid canopy, which is used to explain the similarities of the flow features between rigid and highly flexible canopies. Analyses of the turbulent kinetic energy (TKE) budget show that, in the flexible canopy cases, the waving term associated with the canopy drag–flow velocity correlation can be as large as one-half of the shear production term near the canopy top. Spectral TKE budget analyses further reveal dominant effects at two characteristic scales: the monami scale associated with the coherent structures in the mixing layer and the wake scale associated with the interval between adjacent stems. For the TKE in flexible canopies, the waving term is found to play an important role in the interscale and wall-normal transport terms. Our LES data show that the spectral shortcut mechanism proposed by previous studies is caused by the waving term.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3