Abstract
We consider miscible displacements in two-dimensional homogeneous porous media where the displacing fluid is less viscous and has a different density than the displaced fluid. We find that the dynamics evolve through nine possible regimes depending on the viscosity ratio, strength of density variations and the strength of the background flow, as characterized by the Péclet number. At early times the interface is dominated by longitudinal diffusion before undergoing a transition to a slumping regime where vertical flow is important. At intermediate times, vertical flow and diffusion can be neglected and there are three different limiting solutions: a fingering limit; an injection-driven gravity-current limit; and a density-driven gravity-current limit. Finally at late times, transverse diffusion becomes important and there is a transition from an apparent shutdown regime to a viscously enhanced Taylor-slumping regime. In each of the regimes, the dominant scalings are identified and reduced-order models for the evolution of the concentration field are developed. Lastly, three case studies are considered to illustrate the dominant physical balances in the geophysically relevant setting of geological
$\textrm {CO}_2$
storage.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献