Dynamic interaction of gravity currents in a confined porous layer

Author:

Yang Kaien,Zheng ZhongORCID

Abstract

We study the dynamic interaction of two gravity currents in a confined porous layer, one heavier and one lighter, partly inspired by the practice of geological $\mathrm {CO}_2$ sequestration in oil fields. Two coupled nonlinear advective-diffusive equations are derived to describe the time evolution of the profile shape of both the upper (lighter) and lower (heavier) currents. At early times, the upper and lower currents remain separated and propagate independently. As time progresses, the currents approach each other and start to interact. We have identified eight different regimes of gravity current interaction at late times, impacted by four dimensionless parameters, representing the flow rate partition, ratio of buoyancy over the injection force, and the viscosity contrasts between the two injecting and displaced fluids. By defining appropriate similarity variables at either the early or late times, the governing partial differential equations (PDEs) reduce to different ordinary differential equations (ODEs), corresponding to the classic nonlinear diffusion solutions at early times and eight different self-similar solutions at late times when the currents attach to each other. It is of interest to note that in four of the eight regimes of late-time interaction (regimes 2, 6–8), self-similar solutions can be constructed by combining appropriately the three basic solutions (i.e. shock, rarefaction and travelling wave solutions) identified during single fluid injection in confined porous layers. In the four other regimes (regimes 1, 3–5), implicit solutions in the form of logarithm or error functions are obtained due to the influence of flow confinement and interaction of gravity currents. Potential implications of the model and solutions are also briefly discussed in the context of ${\rm CO}_2$ -water co-flooding for simultaneous ${\rm CO}_2$ sequestration and oil recovery.

Funder

Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference54 articles.

1. The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface;Huppert;J. Fluid Mech.,1982

2. Gravity currents: entrainment, stratification and self-similarity;Sher;J. Fluid Mech.,2015

3. A numerical investigation of horizontal viscous gravity currents;Hallez;J. Fluid Mech.,2009

4. The front condition for gravity currents;Marino;J. Fluid Mech.,2005

5. Heavy oil and natural bitumen resources in geological basins of the world: map showing klemme basin classification of sedimentary provinces reporting heavy oil or natural bitumen;Meyer;US Geol. Surv. Open-File Rep.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3