The interaction of gravity currents in a porous layer with a finite edge

Author:

Zheng ZhongORCID

Abstract

The interactions of upper (lighter) and lower (heavier) gravity currents are closely related to fluid-phase resource recovery in porous layers and cleaning of confined spaces. The addition of a second current increases the sweep efficiency of fluid displacement. In this paper, we first derive two ordinary differential equations to describe the interaction of gravity currents in the quasi-steady regime. Two asymptotic regimes are identified, characterised by whether or not the two currents attach to each other, depending on whether the source fluxes are large enough. In the attached regime, a symmetry condition is also identified that describes whether or not the pumping and buoyancy forces balance each other. The model also leads to analytical solutions for the interface shape of the interacting currents in both the detached and attached regimes and for both symmetric and asymmetric currents. For symmetric currents, analytical solutions can also be obtained for the pressure distribution along cap rocks and the sweep efficiency of flooding processes. A particularly interesting aspect is that the displaced fluid remains quiescent at any steady state, regardless of whether the currents attach to each other. Correspondingly, the interface shape of the currents can be described by relatively simple equations and solutions, as if the currents propagate independently in unconfined porous layers. Time transition towards quasi-steady solutions is provided, employing time-dependent numerical solutions of two coupled partial differential equations for dynamic current interaction.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3