Abstract
A new perspective on the analysis of turbulent boundary layers on streamlined bodies is provided by deriving the axisymmetric Reynolds-averaged Navier–Stokes equations in an orthogonal coordinate system aligned with streamlines, streamline-normal lines and the plane of symmetry. Wall-resolved large-eddy simulation using an unstructured overset method is performed to study flow about the axisymmetric DARPA SUBOFF hull at a Reynolds number of
$Re_L = 1.1 \times 10^{6}$
based on the hull length and free-stream velocity. The streamline-normal coordinate is naturally normal to the wall at the hull surface and perpendicular to the free-stream velocity far from the body, which is critical for studying bodies with concave streamwise curvature. The momentum equations naturally reduce to the differential form of Bernoulli's equation and the
$s$
–
$n$
Euler equation for curved streamlines outside of the boundary layer. In the curved laminar boundary layer at the front of the hull, the streamline momentum equation represents a balance of the streamwise advection, streamwise pressure gradient and viscous stress, while the streamline-normal equation is a balance between the streamline-normal pressure gradient and centripetal acceleration. In the turbulent boundary layer on the mid-hull, the curvature terms and streamwise pressure gradient are negligible and the results conform to traditional analysis of flat-plate boundary layers. In the thick stern boundary layer, the curvature and streamwise pressure gradient terms reappear to balance the turbulent and viscous stresses. This balance explains the characteristic variation of static pressure observed for thick boundary layers at the tails of axisymmetric bodies.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献