Author:
Landeau M.,Deguen R.,Olson P.
Abstract
AbstractWe present experiments on the instability and fragmentation of volumes of heavier liquids released into lighter immiscible liquids. We focus on the regime defined by small Ohnesorge numbers, density ratios of the order of one, and variable Weber numbers. The observed stages in the fragmentation process include deformation of the released fluid by either Rayleigh–Taylor instability (RTI) or vortex ring roll-up and destabilization, formation of filamentary structures, capillary instability, and drop formation. At low and intermediate Weber numbers, a wide variety of fragmentation regimes is identified. Those regimes depend on early deformations, which mainly result from a competition between the growth of RTI and the roll-up of a vortex ring. At high Weber numbers, turbulent vortex ring formation is observed. We have adapted the standard theory of turbulent entrainment to buoyant vortex rings with initial momentum. We find consistency between this theory and our experiments, indicating that the concept of turbulent entrainment is valid for non-dispersed immiscible fluids at large Weber and Reynolds numbers.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献