The instability of the thin vortex ring of constant vorticity

Author:

Abstract

A theoretical investigation of the instability of a vortex ring to short azimuthal bending waves is presented. The theory considers only the stability of a thin vortex ring with a core of constant vorticity (constant /r) in an ideal fluid. Both the mean flow and the disturbance flow are found as an asymptotic solution in e = a /R, the ratio of core radius to ring radius. Only terms linear in wave amplitude are retained in the stability analysis. The solution to 0 (e 2 ) is presented, although the details of the stability analysis are carried through completely only for a special class of bending waves that are known to be unstable on a line filament in the presence of strain (Tsai & Widnall 1976) and have been identified in the simple model of Widnall, Bliss & Tsai (1974) as a likely mode of instability for the vortex ring: these occur at certain critical wavenumbers for which waves on a line filament of the same vorticity distribution would not rotate (w 0 = 0). The ring is found to be always unstable for at least the lowest two critical wavenumbers ( ka = 2.5 and 4.35). The amplification rate and wavenumber predicted by the theory are found to be in good agreement with available experimental results.

Publisher

The Royal Society

Subject

General Engineering

Reference22 articles.

1. Batchelor G. K . 1967 Introduction to flu id dynamics pp. 598- 600. C am bridge U niversity Press.

2. Batem an H . 1955 H igher trancendentalfunctions vol. 1 p. 173. California Institute of Technology.

3. Bliss D. B. 1970 T he dynam ics of curved rotational vortex lines. M .S. thesis M assachusetts In stitu te ofTechnology.

4. Bliss D. B. 1973 T h e dynam ics of flows w ith high concentrations of vorticity. Ph.D . thesis M assachusetts Institute ofT echnology.

5. D ean W . R . 1927 N ote on the m otion of a fluid in a curved pipe. M a g . 7 208.

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3