The Distribution of Impactor Core Material During Large Impacts on Earth-like Planets

Author:

Itcovitz Jonathan P.ORCID,Rae Auriol S. P.ORCID,Davison Thomas M.ORCID,Collins Gareth S.ORCID,Shorttle OliverORCID

Abstract

Abstract Large impacts onto young rocky planets may transform their compositions, creating highly reducing conditions at their surfaces and reintroducing highly siderophile metals to their mantles. Key to these processes is the availability of an impactor’s chemically reduced core material (metallic iron). It is, therefore, important to constrain how much of an impactor’s core remains accessible to a planet’s mantle/surface, how much is sequestered to its core, and how much escapes. Here, we present 3D simulations of such impact scenarios using the shock physics code iSALE to determine the fate of impactor iron. iSALE’s inclusion of material strength is vital in capturing the behavior of both solid and fluid components of the planet and thus characterizing iron sequestration to the core. We find that the mass fractions of impactor core material that accretes to the planet core (f core) or escapes (f esc) can be readily parameterized as a function of a modified specific impact energy, with f core > f esc for a wide set of impacts. These results differ from previous works that do not incorporate material strength. Our work shows that large impacts can place substantial reducing impactor core material in the mantles of young rocky planets. Impact-generated reducing atmospheres may thus be common for such worlds. However, through escape and sequestration to a planet’s core, large fractions of an impactor’s core can be geochemically hidden from a planet’s mantle. Consequently, geochemical estimates of late bombardments of planets based on mantle siderophile element abundances may be underestimates.

Funder

UKRI ∣ Science and Technology Facilities Council

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ferric Iron Evolution During Crystallization of the Earth and Mars;Journal of Geophysical Research: Planets;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3