Author:
Capart H.,Hung C.-Y.,Stark C. P.
Abstract
AbstractFlowing over erodible beds, channelized granular avalanches can alter their volume by entraining or detraining basal grains. In detail, entrainment results from a gradual adjustment of stress and velocity profiles over depth, bringing bed material past yield (and vice versa for detrainment). To capture this process, we propose new depth-integrated equations that balance kinetic energy in addition to mass and momentum. The equations require a local granular rheology, assumed viscoplastic, but no extra erosion law. Entrainment rates are instead deduced from the depth-integrated layer dynamics. To check the approach, we obtain solutions for non-equilibrium heap flows, and compare them with experiments conducted in a seesaw channel.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献