Basal boundary conditions for granular surface flows over fragile and brittle erodible beds

Author:

Capart HervéORCID

Abstract

Many granular surface flows occur as shear flows of finite thickness, over erodible beds composed of the same granular material. Such beds may be fragile, and offer no more resistance to erosion than to sustained shear. Or they may be brittle, and offer instead an excess resistance to erosion. To take this contrast into account, new basal boundary conditions are proposed. Their implications for parallel flows down infinite slopes are then examined for three different cases: stationary flows; starting; and stopping transients. For all three cases, flow behaviour is altered significantly when beds present an excess resistance to erosion. For stationary flows, non-unique velocity profiles are obtained, implying hysteresis or history-dependence. For starting transients, a power law growth of the flow thickness is predicted, instead of the jump to finite or infinite depth that would otherwise occur. For stopping transients, flows start to decelerate with a finite basal shear rate, even over erodible substrates. Analytical solutions to the corresponding free and moving boundary problems are obtained, and checked against numerical results. Model predictions are then compared with experimental measurements. Overall, good agreement is obtained. In particular, the model describes well the very different erosional responses observed for fragile and brittle beds.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A continuum model of discrete granular avalanches;Journal of Fluid Mechanics;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3