Granular flow in partially filled slowly rotating drums

Author:

GRAY J. M. N. T.

Abstract

In many industrial processes granular materials are mixed together in partially filled slowly rotating drums. In this paper a general theoretical framework is developed for the quasi-two-dimensional motion of granular material in a rotating drum. The key assumption is that the body can be divided into a fluid-like and a solid-like region, that are separated by a non-material singular surface at which discontinuities occur. Experiments show that close to the free surface there is a thin rapidly moving fluid-like avalanche that flows downslope, and beneath it there is a large region of slowly rotating solid-like material. The solid region provides a net transport of material upslope and there is strong mass transfer between the two regions. In the theory the avalanche is treated as a shallow incompressible Mohr–Coulomb or inviscid material sliding on a moving bed at which there is erosion and deposition. The solid is treated as a rigid rotating body, and the two regions are coupled together using a mass jump condition. The theory has the potential to model time-dependent intermittent flow with shock waves, as well as steady-state continuous flow. An exact solution for the case of steady continuous flow is presented. This demonstrates that when the base of the avalanche lies above the axis of revolution a solid core develops in the centre of the drum. Experiments are presented to show how a mono-disperse granular material mixes in the drum, and the results are compared with the predictions using the exact solution.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3