How particle shape affects granular segregation in industrial and geophysical flows

Author:

Cúñez Fernando David1ORCID,Patel Div12,Glade Rachel C.12

Affiliation:

1. Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627

2. Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627

Abstract

Industrial and environmental granular flows commonly exhibit a phenomenon known as “granular segregation,” in which grains separate according to physical characteristics (size, shape, density), interfering with industrial applications (cement mixing, medicine, and food production) and fundamentally altering the behavior of geophysical flows (landslides, debris flows, pyroclastic flows, riverbeds). While size-induced segregation has been well studied, the role of grain shape has not. Here we conduct numerical experiments to investigate how grain shape affects granular segregation in dry and wet flows. To isolate the former, we compare dry, bidisperse mixtures of spheres alone with mixtures of spheres and cubes in a rotating drum. Results show that while segregation level generally increases with particle size ratio, the presence of cubes decreases segregation levels compared to cases with only spheres. Further, we find differences in the segregation level depending on which shape makes up each size class, reflecting differences in mobility when smaller grains are cubic or spherical. We find similar dynamics in simulations of a shear-driven coupled fluid-granular flow (e.g., a simulated riverbed), demonstrating that this phenomenon is not unique to rotating drums; however, in contrast to the dry system, we find that the segregation level increases in the presence of cubic grains, and fluid drag effects can qualitatively change segregation trends. Our findings demonstrate competing shape-induced segregation patterns in wet and dry flows that are independent from grain size controls, with implications for many industrial and geophysical processes.

Funder

American Chemical Society

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3