Genetic differentiation and diversity of sugarbeet germplasm resistant to the sugarbeet root maggot

Author:

Fugate Karen K.ORCID,Campbell Larry G.,Covarrubias-Pazaran Giovanny,Rodriguez-Bonilla Lorraine,Zalapa Juan

Abstract

AbstractGermplasm lines with resistance to the sugarbeet root maggot (SBRM) have been developed and released to the public, providing a means to generate hybrids with resistance against the most devastating insect pest of sugarbeet in North America. Effective use of this germplasm, however, requires knowledge of relative strengths of SBRM resistance between lines and knowledge of the diversity and genetic relationships between germplasm. Therefore, field studies comparing SBRM resistance of four released SBRM-resistant germplasm lines (F1015, F1016, F1024 and F1043), a SBRM-resistant parent (PI 179180) and an unreleased SBRM-resistant population (F1055) were performed, and genetic analysis of the diversity and relationships between SBRM-resistant germplasm and their available parents was conducted using simple sequence repeat (SSR) markers. Under natural SBRM infestations, resistant germplasm exhibited significantly less SBRM damage than a susceptible control, with similar, high levels of resistance in F1016, F1024, F1043, F1055 and PI 179180 and lower resistance in F1015. SSR analysis revealed genetic similarities between F1016, F1024 and F1055, while F1015 and F1043 were genetically distinct from these lines. Among resistant genotypes, F1015 and F1043 exhibited greatest and least within-line genetic diversity, indicating greater and lesser inbreeding for F1043 and F1015, respectively. Similarities in damage ratings and genetics for F1016, F1024 and F1055 indicate that these lines are likely to be equally effective at introducing SBRM resistance into elite populations and in combining ability. In contrast, F1043, with its unique parentage and genetic dissimilarity from other resistant lines, provides a genetically distinct, but similarly effective, source of SBRM resistance.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3