In silico analysis of the fragrance gene (badh2) in Asian rice (Oryza sativa L.) germplasm and validation of allele specific markers

Author:

Withana Withanage Vidyani Erandika,Kularathna Rathanyaka Maudiyanselage Ramesha Eshani,Kottearachchi Nisha SualriORCID,Kekulandara Deepthika S.,Weerasena Jagath,Steele Katherine A.

Abstract

AbstractBadh2 of rice is considered to be the major gene responsible for the fragrance in rice. The wild type badh2 allele encodes betaine aldehyde dehydrogenase 2 (BADH2) enzyme while the mutated version of badh2 gene encodes non-functional BADH2 enzyme that leads to the accumulation of 2-acetyl-1-pyrroline (2AP), the principal fragrant compound in rice. There are many mutated recessive alleles causing fragrance in global rice germplasm, although the badh2.1 allele present in Basmati type rice is the most well-known among breeders. In this study, we attempted to reveal potential fragrance causing mutations, and the respective varieties carrying them, through in silico analysis based on the sequences available in the Rice SNP-Seek-Database of International Rice Research Institute. The sequences of 1878 rice accessions from 22 countries were analysed to identify mutations in each exon of badh2 comparatively with the non-fragrant ‘wildtype’ GenBank sequence in Nanjing11, Oryza sativa indica (EU770319.1). Results revealed that 63 varieties from 12 countries possessed the most prevalent allele, badh2.1 having an 8 bp deletion and three single nucleotide polymorphisms in the 7th exon. The second most prevalent allele in genotypes from Asia was badh2.7 having a ‘G’ insertion in the 14th exon. A novel allele with a T deletion in 9th exon was detected in a Thai rice accession. Rice varieties containing either badh2.1 or badh2.7 alleles could be identified with DNA markers for badh2.1 (frg) and badh2.7 (Bad2.7CAPS). The marker, Bad2.7CAPS, co-segregated with the fragrance phenotype in two crosses, confirming the possibility of employing it in marker assisted breeding.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3