Author:
Oliver Ann E.,Crowe Lois M.,Crowe John H.
Abstract
AbstractAnhydrobiosis, or life without water, is the remarkable ability of certain types of plants and animals to survive almost total dehydration. This phenomenon requires a coordinated series of events within the cells of anhydrobiotes that protect their cellular components, particularly proteins and lipid membranes, from damage caused by the removal of water. Much of what is now understood about preserving biological samples during drying was learned by studying naturally desiccation-tolerant organisms and extended using model systems such as phospholipid vesicles. Most anhydrobiotic organisms accumulate disaccharides in their cells and tissues during the dehydration process. These carbohydrates, usually sucrose or trehalose, satisfy two criteria that appear to be necessary for protecting membranes during desiccation and during storage in the dry state. These requirements include: (1) depression of the gel-to-liquid crystalline phase transition temperature (Tm) in the dehydrated lipid to a temperature at or near that of the hydrated lipid, a process that appears to require a direct interaction between the carbohydrates and the lipid molecules of the membrane; and (2) formation of a carbohydrate glass with a relatively high glass transition temperature, leading to inhibition of fusion between the vesicles.
Publisher
Cambridge University Press (CUP)
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献