THE WATER RELATIONS AND IRRIGATION REQUIREMENTS OF COCOA (THEOBROMA CACAOL.): A REVIEW

Author:

CARR M. K. V.,LOCKWOOD G.

Abstract

SUMMARYThe results of research into the water relations of cocoa are reviewed in the context of drought mitigation and irrigation need. Background information on the centres of production of the cocoa tree, and the role of water in crop development and growth processes, is followed by reviews of the effects of water stress on stomatal conductance, leaf water status and gas exchange, together with drought tolerance, crop water use and water productivity. Leaf and shoot growth occur in a series of flushes, which are synchronized by the start of the rains following a dry season (or an increase in temperature), alternating with periods of ‘dormancy’. Flowering is inhibited by water stress but synchronous flowering occurs soon after the dry season ends. Roots too grow in a rhythmic pattern similar to that of leaf flushes. Roots can reach depths of 1.5–2.0 m, but with a mass of roots in the top 0.2–0.4 m, and spread laterally >5 m from the stem. Stomata open in low light intensities and remain fully open in full sunlight in well-watered plants. Partial stomatal closure begins at a leaf water potential of about −1.5 MPa. Stomatal conductance is sensitive to dry air, declining as the saturation deficit increases from about 1.0 up to 3.5 kPa. Net photosynthesis and transpiration both consequently decline over a similar range of values. Little has been published on the actual water use of cocoa in the field. Measured ETc values equate to <2 mm d−1only, whereas computed ETc rates of 3–6 mm d−1in the rains and <2 mm d−1in the dry season have also been reported. Despite its sensitivity to water stress, there is too a paucity of reliable, field-based published data of practical value on the yield responses of cocoa to drought or to irrigation. With the threat of climate change leading to less, or more erratic, rainfall in the tropics, uncertainty in yield forecasting as a result of water stress will increase. Social, technical and economic issues influencing the research agenda are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

Reference112 articles.

1. Yapp J. H. H. and Hadley P. (1994). Inter-relationships between canopy architecture, light interception, vigour and yield in cocoa: implications for improving production efficiency. In Proceedings of the International Cocoa Conference: Challenges in the 90s. Kuala Lumpur, Malaysia, September 1991, 332–350.

2. Comparisons between Press and Pressure Chamber Techniques for Measuring Leaf Water Potential

3. Studies on pod and bean values of Theobroma cacao L. in Nigeria. 1. Environmental effects on West African Amelonado with particular attention to annual rainfall distribution;Toxopeus;Netherlands Journal of Agricultural Science,1970

4. Taylor S. J. and Hadley P. (1988). Relationships between root and shoot growth in cocoa (Theobroma cacao L.) grown under different shade regimes. In Proceedings of the 10th International Cocoa Research Conference, Santa Domingo, Dominican Republic, May 1987, 177–183.

5. World Cocoa Foundation (2010). http://www.worldcocoafoundation.org/learn-about-cocoa/cocoa-facts-and-figures.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3