Chromatic, Flow and Reliability Polynomials: The Complexity of their Coefficients

Author:

OXLEY JAMES,WELSH DOMINIC

Abstract

We study the complexity of computing the coefficients of three classical polynomials, namely the chromatic, flow and reliability polynomials of a graph. Each of these is a specialization of the Tutte polynomial Σtijxiyj. It is shown that, unless NP = RP, many of the relevant coefficients do not even have good randomized approximation schemes. We consider the quasi-order induced by approximation reducibility and highlight the pivotal position of the coefficient t10 = t01, otherwise known as the beta invariant.Our nonapproximability results are obtained by showing that various decision problems based on the coefficients are NP-hard. A study of such predicates shows a significant difference between the case of graphs, where, by Robertson–Seymour theory, they are computable in polynomial time, and the case of matrices over finite fields, where they are shown to be NP-hard.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hardness and approximation of submodular minimum linear ordering problems;Mathematical Programming;2023-12-14

2. Little tricks leading to a significant acceleration of the calculation of the reliability of a random graph;2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM);2023-01-03

3. Experimenting with Beta Distributions for Approximating Hammocks’ Reliability;Advances in Intelligent Systems and Computing;2020-07-28

4. Tight Bounds on the Coefficients of Consecutive k-out-of-n:F Systems;Advances in Intelligent Systems and Computing;2020-07-28

5. Chromatic and flow polynomials of generalized vertex join graphs and outerplanar graphs;Discrete Applied Mathematics;2016-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3