Hardness and approximation of submodular minimum linear ordering problems

Author:

Farhadi Majid,Gupta SwatiORCID,Sun Shengding,Tetali Prasad,Wigal Michael C.

Abstract

AbstractThe minimum linear ordering problem (MLOP) generalizes well-known combinatorial optimization problems such as minimum linear arrangement and minimum sum set cover. MLOP seeks to minimize an aggregated cost $$f(\cdot )$$ f ( · ) due to an ordering $$\sigma $$ σ of the items (say [n]), i.e., $$\min _{\sigma } \sum _{i\in [n]} f(E_{i,\sigma })$$ min σ i [ n ] f ( E i , σ ) , where $$E_{i,\sigma }$$ E i , σ is the set of items mapped by $$\sigma $$ σ to indices [i]. Despite an extensive literature on MLOP variants and approximations for these, it was unclear whether the graphic matroid MLOP was NP-hard. We settle this question through non-trivial reductions from mininimum latency vertex cover and minimum sum vertex cover problems. We further propose a new combinatorial algorithm for approximating monotone submodular MLOP, using the theory of principal partitions. This is in contrast to the rounding algorithm by Iwata et al. (in: APPROX, 2012), using Lovász extension of submodular functions. We show a $$(2-\frac{1+\ell _{f}}{1+|E|})$$ ( 2 - 1 + f 1 + | E | ) -approximation for monotone submodular MLOP where $$\ell _{f}=\frac{f(E)}{\max _{x\in E}f(\{x\})}$$ f = f ( E ) max x E f ( { x } ) satisfies $$1 \le \ell _f \le |E|$$ 1 f | E | . Our theory provides new approximation bounds for special cases of the problem, in particular a $$(2-\frac{1+r(E)}{1+|E|})$$ ( 2 - 1 + r ( E ) 1 + | E | ) -approximation for the matroid MLOP, where $$f = r$$ f = r is the rank function of a matroid. We further show that minimum latency vertex cover is $$\frac{4}{3}$$ 4 3 -approximable, by which we also lower bound the integrality gap of its natural LP relaxation, which might be of independent interest.

Funder

Massachusetts Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3