Turbulent Rayleigh shear flow

Author:

Crow Steven

Abstract

Townsend has derived a relation between mean vorticity and Reynolds stress valid in the wall layer of a turbulent flow. The vorticity Ω appears as a function of the local stress τ and its gradient. Such a relation is better suited for use in the vorticity equation than in the momentum equation. The Rayleigh problem, whose vorticity equation is simply ∂Ω/∂t = ∂2τ/∂y2, is introduced as a setting for Townsend's theory. Certain wall speed programmes are shown to generate Rayleigh layers that are exactly self-similar in the fully turbulent part of the flow. Those layers correspond to Clauser's equilibrium boundary layers. A formal analogy between the two families is found; the analogy becomes quantitatively exact in the limit of infinite Reynolds number. The Rayleigh problem is posed in similarity form. A composite non-linear, ordinary differential equation for the stress profile is deduced from a two-layer model incorporating Townsend's relation for the wall layer and Clauser's constant eddy-viscosity assumption for the outer layer. The profile depends on the wall-speed programme selected and on two empirical constants: the combination λ = √(k)/k of Clauser's k and Kármán's k, and Townsend's constant B. Closed-form solutions for arbitrary λ and B are obtained in two important cases: constant wall stress, analogous to constant pressure above a boundary layer, and zero wall stress, corresponding to continuous separation. The velocity profile in the wall region of a continuously separating Rayleigh layer is found to depend sensitively on B.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

1. Crow, S. C. 1966 Doctoral thesis, Department of Engineering, California Institute of Technology.

2. Mellor, G. L. & Gibson, D. M. 1966 J. Fluid Mech. 24, 225.

3. Mellor, G. L. 1966 J. Fluid Mech. 24, 255.

4. Jeffreys, H. & Jeffreys, B. 1956 Methods of Mathematical Physics , 3rd ed. Cambridge University Press.

5. Townsend, A. A. 1961 J. Fluid Mech. 11, 97.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3