Equilibrium layers and wall turbulence

Author:

Townsend A. A.

Abstract

In turbulent flow past rigid boundaries, there can be distinguished regions close to the wall in which the local rates of energy production and dissipation are so large that aspects of the turbulent motion concerned with these processes are determined almost solely by the distribution of shear stress within the region and are independent of conditions outside it. These regions are here called equilibrium layers because of the equilibrium existing between local rates of energy production and dissipation. Three kinds of equilibrium layer have been studied experimentally, the constant-stress layer, the transpiration layer and the zero-stress layer, but there are other possible forms. One that is of importance in the theory of self-preserving flow in boundary layers and in diffusers is the ‘linear-stress’ layer in which the stress increases linearly with distance from the wall. The properties of these various equilibrium layers are considered and the distributions of mean velocity are derived from the equation for the turbulent kinetic energy and certain assumptions of flow similarity.The theory of self-preserving wall flow, usually expressed as a combination of the law of the wall and the defect law, assumes compatibility between the outer flow and the equilibrium layer, and the course of development depends on the kind of equilibrium layer. Earlier work by the author, which assumed the defect law, is only valid if the whole of the equilibrium layer is a constant-stress layer and this is not true in strong adverse pressure gradients. A consistent theory is developed for these flows by assuming a ‘linear-stress’ layer, and the solutions show the relation between flows of finite stress and of zero stress and provide a plausible explanation of the phenomenon of downstream instability observed by Clauser. Self-preserving flow in wedges is treated on similar lines.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference22 articles.

1. Rotta, J. 1953 Ing.-Arch. 19,31.

2. Clauser, F. H. 1956 Advanc. App. Mech. 4,1.

3. Townsend, A. A. 1960 J. Fluid Mech. 8,143.

4. Milliat, J.-P. 1957 9me. Congrès intern. Mécan. appl., Univ. Bruxelles,3,419.

5. Craya, A. & Milliat, J.-P. 1955 C.R. Acad. Sci., Paris,241,542.

Cited by 572 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3