Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit

Author:

TAGHAVI S. M.,SEON T.,MARTINEZ D. M.,FRIGAARD I. A.

Abstract

We consider the viscous limit of a plane channel miscible displacement flow of two generalized Newtonian fluids when buoyancy is significant. The channel is inclined close to horizontal. A lubrication/thin-film approximation is used to simplify the governing equations and a semi-analytical solution is found for the flux functions. We show that there are no steady travelling wave solutions to the interface propagation equation. At short times the diffusive effects of the interface slope are dominant and there is a flow reversal, relative to the mean flow. We are able to find a short-time similarity solution governing this initial counter-current flow. At longer times the solution behaviour can be predicted from the associated hyperbolic problem (where diffusive effects are set to zero). Each solution consists of a number N ≥ 1 of steadily propagating fronts of differing speeds, joined together by segments of interface that are stretched between the fronts. Diffusive effects are always present in the propagating fronts. We explore the effects of viscosity ratio, inclinations and other rheological properties on the front height and front velocity. Depending on the competition of viscosity, buoyancy and other rheological effects, it is possible to have single or multiple fronts. More efficient displacements are generally obtained with a more viscous displacing fluid and modest improvements may also be gained with slight positive inclination in the direction of the density difference. Fluids that are considerably shear-thinning may be displaced at high efficiencies by more viscous fluids. Generally, a yield stress in the displacing fluid increases the displacement efficiency and yield stress in the displaced fluid decreases the displacement efficiency, eventually leading to completely static residual wall layers of displaced fluid. The maximal layer thickness of these static layers can be directly computed from a one-dimensional momentum balance and indicates the thickness of static layer found at long times.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3