The Dynamics of Lava Flows

Author:

Griffiths R. W.1

Affiliation:

1. Research School of Earth Sciences, The Australian National University, Canberra, Australia; 0200 ACT

Abstract

Lava flows are gravity currents of partially molten rock that cool as they flow, in some cases melting the surface over which they flow but in all cases gradually solidifying until they come to rest. They present a wide range of flow regimes from turbulent channel flows at moderate Reynolds numbers to extremely viscous or plastic, creeping flows, and even brittle rheology may play a role once some solid has formed. The cooling is governed by the coupling of heat transport in the flowing lava with transfer from the lava surface into the surrounding atmosphere or water or into the underlying solid, and it leads to large changes in rheology. Instabilities, mostly resulting from cooling, lead to flow branching, surface folding, rifting, and fracturing, and they contribute to the distinctive styles and surface appearances of different classes of flows. Theoretical and laboratory models have complemented field studies in developing the current understanding of lava flows, motivated by the extensive roles they play in the development of planetary crusts and ore deposits and by the immediate hazards posed to people and property. However, much remains to be learned about the mechanics governing creeping, turbulent, and transitional flows in the presence of large rheology change on cooling and particularly about the advance of flow fronts, flow instabilities, and the development of flow morphology. I introduce the dynamical problems involved in the study of lava flows and review modeling approaches.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 305 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3