Sound radiation in turbulent channel flows

Author:

HU ZHIWEI,MORFEY CHRISTOPHER L.,SANDHAM NEIL D.

Abstract

Lighthill’s acoustic analogy is formulated for turbulent channel flow with pressure as the acoustic variable, and integrated over the channel width to produce a two-dimensional inhomogeneous wave equation. The equivalent sources consist of a dipole distribution related to the sum of the viscous shear stresses on the two walls, together with monopole and quadrupole distributions related to the unsteady turbulent dissipation and Reynolds stresses respectively. Using a rigid-boundary Green function, an expression is found for the power spectrum of the far-field pressure radiated per unit channel area. Direct numerical simulations (DNS) of turbulent plane Poiseuille and Couette flow have been performed in large computational domains in order to obtain good resolution of the low-wavenumber source behaviour. Analysis of the DNS databases for all sound radiation sources shows that their wavenumber–frequency spectra have non-zero limits at low wavenumber. The sound power per unit channel area radiated by the dipole distribution is proportional to Mach number squared, while the monopole and quadrupole contributions are proportional to the fourth power of Mach number. Below a particular Mach number determined by the frequency and radiation direction, the dipole radiation due to the wall shear stress dominates the far field. The quadrupole takes over at Mach numbers above about 0.1, while the monopole is always the smallest term. The resultant acoustic field at any point in the channel consists of a statistically diffuse assembly of plane waves, with spectrum limited by damping to a value that is independent of Mach number in the low-M limit.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3