Numerical Simulation and Mechanism Investigations of Cavitating Noise Around a Two-Dimension Valve Pilot Stage

Author:

Yonghua Zhao,Jian Ruan,Qianqian Lu

Abstract

The two-dimensional valve integrates the pilot stage and the power stage on one spool, which makes it easy to achieve a fast valve operation and a high frequency response. It has the advantages of simple structure, stable performance and high power to weight ratio. In this paper, the fluid flow in the pilot stage of a 2D valve is analyzed by computational fluid dynamics, and the influence of cavitation on the flow field in the valve is the main study objective. The result shows that the throttling action of the valve port forms a high-speed jet in the chute area of the valve sleeve, and a large area of cavitation cavitation is generated at the same time. The velocity vortex and cavitation work together to intensify the pulsation of the fluid in the valve and become the main source of the noise. In the 2D valve pilot stage, the sound pressure level at the back of the chute of the valve sleeve reaches 175dB, and the maximum sound pressure level at the middle and outlet reaches 168dB. The sound pressure level at the back and middle of the chute decreases first and then increases, and the sound pressure level at the outlet of the chute decreases slowly. In the range of 0 - 5000Hz, the noise energy is concentrated in the low frequency band of less than 1000Hz, showing typical cavitation noise characteristics. The numerical result is favorable with the experimental result.

Publisher

International Institute of Acoustics and Vibration (IIAV)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3