Experimental and numerical investigation of turbulent convection in a rotating cylinder

Author:

KUNNEN R. P. J.,GEURTS B. J.,CLERCX H. J. H.

Abstract

The effects of an axial rotation on the turbulent convective flow because of an adverse temperature gradient in a water-filled upright cylindrical vessel are investigated. Both direct numerical simulations and experiments applying stereoscopic particle image velocimetry are performed. The focus is on the gathering of turbulence statistics that describe the effects of rotation on turbulent Rayleigh–Bénard convection. Rotation is an important addition, which is relevant in many geophysical and astrophysical flow phenomena.A constant Rayleigh number (dimensionless strength of the destabilizing temperature gradient) Ra = 109 and Prandtl number (describing the diffusive fluid properties) σ = 6.4 are applied. The rotation rate, given by the convective Rossby number Ro (ratio of buoyancy and Coriolis force), takes values in the range 0.045 ≤ Ro ≤ ∞, i.e. between rotation-dominated flow and zero rotation. Generally, rotation attenuates the intensity of the turbulence and promotes the formation of slender vertical tube-like vortices rather than the global circulation cell observed without rotation. Above Ro ≈ 3 there is hardly any effect of the rotation on the flow. The root-mean-square (r.m.s.) values of vertical velocity and vertical vorticity show an increase when Ro is lowered below Ro ≈ 3, which may be an indication of the activation of the Ekman pumping mechanism in the boundary layers at the bottom and top plates. The r.m.s. fluctuations of horizontal and vertical velocity, in both experiment and simulation, decrease with decreasing Ro and show an approximate power-law behaviour of the shape Ro0.2 in the range 0.1 ≲ Ro ≲ 2. In the same Ro range the temperature r.m.s. fluctuations show an opposite trend, with an approximate negative power-law exponent Ro−0.32. In this Rossby number range the r.m.s. vorticity has hardly any dependence on Ro, apart from an increase close to the plates for Ro approaching 0.1. Below Ro ≈ 0.1 there is strong damping of turbulence by rotation, as the r.m.s. velocities and vorticities as well as the turbulent heat transfer are strongly diminished. The active Ekman boundary layers near the bottom and top plates cause a bias towards cyclonic vorticity in the flow, as is shown with probability density functions of vorticity. Rotation induces a correlation between vertical vorticity and vertical velocity close to the top and bottom plates: near the top plate downward velocity is correlated with positive/cyclonic vorticity and vice versa (close to the bottom plate upward velocity is correlated with positive vorticity), pointing to the vortical plumes. In contrast with the well-mixed mean isothermal bulk of non-rotating convection, rotation causes a mean bulk temperature gradient. The viscous boundary layers scale as the theoretical Ekman and Stewartson layers with rotation, while the thermal boundary layer is unaffected by rotation. Rotation enhances differences in local anisotropy, quantified using the invariants of the anisotropy tensor: under rotation there is strong turbulence anisotropy in the centre, while near the plates a near-isotropic state is found.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3