Reynolds number scaling and energy spectra in geostrophic convection

Author:

Madonia MatteoORCID,Aguirre Guzmán Andrés J.ORCID,Clercx Herman J.H.ORCID,Kunnen Rudie P.J.ORCID

Abstract

We report flow measurements in rotating Rayleigh–Bénard convection in the rotationally constrained geostrophic regime. We apply stereoscopic particle image velocimetry to measure the three components of velocity in a horizontal cross-section of a water-filled cylindrical convection vessel. At a constant, small Ekman number $Ek=5\times 10^{-8}$ , we vary the Rayleigh number $Ra$ between $10^{11}$ and $4\times 10^{12}$ to cover various subregimes observed in geostrophic convection. We also include one non-rotating experiment. The scaling of the velocity fluctuations (expressed as the Reynolds number $Re$ ) is compared to theoretical relations expressing balances of viscous–Archimedean–Coriolis (VAC) and Coriolis–inertial–Archimedean (CIA) forces. Based on our results we cannot decide which balance is most applicable here; both scaling relations match equally well. A comparison of the current data with several other literature datasets indicates a convergence towards diffusion-free scaling of velocity as $Ek$ decreases. However, at lower $Ra$ , the use of confined domains leads to prominent convection in the wall mode near the sidewall. Kinetic energy spectra point at an overall flow organisation into a quadrupolar vortex filling the cross-section. This quadrupolar vortex is a quasi-two-dimensional feature; it manifests only in energy spectra based on the horizontal velocity components. At larger $Ra$ , the spectra reveal the development of a scaling range with exponent close to $-5/3$ , the classical exponent for inertial range scaling in three-dimensional turbulence. The steeper $Re(Ra)$ scaling at low $Ek$ and development of a scaling range in the energy spectra are distinct indicators that a fully developed, diffusion-free turbulent bulk flow state is approached, sketching clear perspectives for further investigation.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

H2020 European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3