Effects of small streamline curvature on turbulent duct flow

Author:

Hunt I. A.,Joubert P. N.

Abstract

Mean velocity profiles, turbulence intensity distributions and streamwise energy spectra are presented for turbulent air flow in a smooth-walled, high aspect ratio rectangular duct with small streamwise curvature, and are compared with measurements taken in a similar straight duct.The results for the present curved flow are found to differ significantly from those for the more highly curved flows reported previously, and suggest the need to distinguish between ‘shear-dominated’ flows with small curvature and ‘inertia-dominated’ flows with high curvature. Velocity defect and angular-momentum defect hypotheses fail to correlate the central-region mean flow data, but the wall-region data are consistent with the conventional straight-wall similarity hypothesis. A secondary flow of Taylor–Goertler vortex pattern is found to occur in the central flow region.An examination of the flow equations yields a model for the mechanisms by which streamline curvature affects turbulent flow, in which a major effect is a direct change in the turbulent shear stress through a conservative reorientation of the turbulence intensity components. Data for the streamwise and transverse turbulence intensities show behaviour consistent with that expected from the equations, and the distribution of total turbulence energy in the central flow region is found to be nearly invariant with Reynolds number and wall curvature, in agreement with the model.Energy spectra for the streamwise component are examined in terms of a Townsend-type two-component turbulence model. They indicate that a universal, ‘active’ component exists in all flow regions, with an ‘inactive’ component which affects only the low wavenumber spectra intensities. This is taken to imply that the effects of streamline curvature are determined by the central-region flow structure alone.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference47 articles.

1. Townsend, A. A. 1956 The Structure of Turbulent Shear Flow .Cambridge University Press.

2. Halleen, R. M. & Johnston, J. P. 1967 Stanford University Dept. Mech. Eng. Thermosci. Div. Rep. MD—18.

3. Smith, A. M. O. 1955 Quart. Appl. Math. 13,233.

4. Bradshaw, P. 1969 J. Fluid Mech. 36,177.

5. Kármán, T. von 1951 Collected Works , vol. 4,p.452.Butterworths.

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3