Turbulent flow in curved channels

Author:

Brethouwer GeertORCID

Abstract

Fully developed turbulent flow in channels with mild to strong longitudinal curvature is studied by direct numerical simulations. The Reynolds based on the bulk mean velocity and channel half-width $\delta$ is fixed at $20\,000$ , resulting in a friction Reynolds number of approximately 1000. Four cases are considered with curvature varying from $\gamma = 2\delta /r_c = 0.033$ to 0.333, where $r_c$ is the curvature radius at the channel centre. Substantial differences between the mean wall shear stress on the convex and concave walls are already observed for $\gamma = 0.033$ . A log-law region is absent and a region with nearly constant mean angular momentum develops in the channel centre for strong curvatures. Spanwise and wall-normal velocity fluctuations are strongly amplified by curvature in the outer region of the concave channel side. Only near the walls, where curvature effects are relatively weak, do the mean velocity and velocity fluctuation profiles approximately collapse when scaled by wall units based on the local friction velocity. Budgets of the streamwise and wall-normal Reynolds-stress equations are presented and turbulence structures are investigated through visualizations and spectra. In the case with strongest curvature, the flow relaminarizes locally near the convex wall. On the concave channel side, large elongated streamwise vortices reminiscent of Taylor–Görtler vortices develop for all curvatures considered. The maximum in the premultiplied two-dimensional wall-normal energy spectrum and co-spectrum shifts towards larger scales with increasing curvature. The large scales substantially contribute to the wall-normal velocity fluctuations and momentum transport on the concave channel side.

Funder

Vetenskapsrådet

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3