Miscible rectilinear displacements with gravity override. Part 2. Heterogeneous porous media

Author:

CAMHI EMMANUEL,MEIBURG ECKART,RUITH MICHAEL

Abstract

The effects of permeability heterogeneities on rectilinear displacements with viscosity contrast and density variations are investigated computationally by means of direct numerical simulations. Physical interpretations are given in terms of mutual interactions among the three vorticity components related to viscous, density and permeability effects. In homogeneous environments the combined effect of the unfavourable viscosity gradient and the potential velocity field generated by the horizontal boundaries was seen to produce a focusing mechanism that resulted in the formation of a strong vorticity layer and the related growth of a dominant gravity tongue (Ruith & Meiburg 2000). The more randomly distributed vorticity associated with the heterogeneities tends to ‘defocus’ this interaction, thereby preventing the formation of the vorticity layer and the gravity tongue. When compared to neutrally buoyant flows, the level of heterogeneity affects the breakthrough recovery quite differently. For moderate heterogeneities, a gravity tongue still forms and leads to early breakthrough, whereas the same result is accomplished for large heterogeneities by channelling. At intermediate levels of heterogeneity, these tendencies partially cancel each other, so that the breakthrough recovery reaches a maximum. Similarly, the dependence of the breakthrough recovery on the correlation length is quite different in displacements with density contrasts compared to neutrally buoyant flows. For neutrally buoyant flows the resonant interaction between viscosity and permeability vorticities typically leads to a minimal recovery at intermediate values of the correlation length. In contrast, displacements with density contrast give rise to a gravity tongue for both very small and very large values of this length, so that the recovery reaches a maximum at intermediate values.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3