Numerical Study of Density-Driven Convection in Laminated Heterogeneous Porous Media

Author:

Li Qian,Cai Wei Hua,Li Bing Xi,Chen Ching-YaoORCID

Abstract

ABSTRACTIn the present study, we use direct numerical simulation to investigate the density-driven convection in a two-dimensional anisotropic heterogeneous porous media associated with significant laminated formation. At first, the heterogeneous porous media are randomly generated to represent laminated structure, in which the horizontal correlation length of permeability field is much longer than the vertical counterpart. Then, a highly accurate pseudo-spectral method and compact finite difference scheme with higher order of accuracy are employed to numerically reproduce the convection flow in the laminated porous media. The results show that the laminated structures restrict interactions among the downward plumes of heavier fluid. The plumes tend to descend more straightly in a laminated porous medium associated with a slower growth rate. As a result, the laminated distribution of permeability is considered having an inhibiting effect on the convection flow.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3